Ruthenium nanoparticles on nano-level-controlled carbon supports as highly effective catalysts for arene hydrogenation.

نویسندگان

  • Mikihiro Takasaki
  • Yukihiro Motoyama
  • Kenji Higashi
  • Seong-Ho Yoon
  • Isao Mochida
  • Hideo Nagashima
چکیده

The reaction of three types of carbon nanofibers (CNFs; platelet: CNF-P, tubular: CNF-T, herringbone: CNF-H) with [Ru3(CO)12] in toluene heated at reflux provided the corresponding CNF-supported ruthenium nanoparticles, Ru/CNFs (Ru content = 1.1-3.8 wt %). TEM studies of these Ru/CNFs revealed that size-controlled Ru nanoparticles (2-4 nm) exist on the CNFs, and that their location was dependent on the surface nanostructures of the CNFs: on the edge of the graphite layers (CNF-P), in the tubes and on the surface (CNF-T), and between the layers and on the edge (CNF-H). Among these Ru/CNFs, Ru/CNF-P showed excellent catalytic activity towards hydrogenation of toluene with high reproducibility; the reaction proceeded without leaching of the Ru species, and the catalyst was reusable. The total turnover number of the five recycling experiments for toluene hydrogenation reached over 180,000 (mol toluene) (mol Ru)(-1). Ru/CNF-P was also effective for the hydrogenation of functionalized benzene derivatives and pyridine. Hydrogenolysis of benzylic C-O and C-N bonds has not yet been observed. Use of poly(ethylene glycol)s (PEGs) as a solvent made possible the biphasic catalytic hydrogenation of toluene. After the reaction, the methylcyclohexane formed was separated by decantation without contamination of the ruthenium species and PEG. The insoluble PEG phase containing all of the Ru/CNF was recoverable and reusable as the catalyst without loss of activity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An investigation of the effect of carbon support on ruthenium/carbon catalysts for lactic acid and butanone hydrogenation.

A series of ruthenium catalysts supported on two different carbons were tested for the hydrogenation of lactic acid to 1,2-propanediol and butanone to 2-butanol. The properties of the carbon supports were investigated by inelastic neutron scattering and correlated with the properties of the ruthenium deposited onto the carbons by wet impregnation or sol-immobilisation. It was noted that the rat...

متن کامل

Sandwiched Ruthenium/Carbon Nanostructures for Highly Active Heterogeneous Hydrogenation

Since the discovery of ruthenium as a catalyst for hydrogenation reactions, Ru catalysts have been widely used in the chemical, petrochemical, food, and pharmaceutical industries, and in energy-conversion technologies. The scope of homogeneous Ru catalysts has been well-illustrated recently. However, heterogeneous catalysts can be preferable from both industrial and environmental perspectives. ...

متن کامل

Diphosphite ligands derived from carbohydrates as stabilizers for ruthenium nanoparticles: promising catalytic systems in arene hydrogenation.

Ruthenium nanoparticles (RuNPs) were prepared through the hydrogenation of [Ru(COD)(COT)] (COD = 1,5-cyclooctadiene, COT = 1,3,5-cyclooctatriene) in the presence of diphosphites derived from carbohydrates as stabilizing agents, and interestingly, structural modifications of the diphosphite backbone were found to influence nanoparticle size and dispersity, as well as their catalytic activity in ...

متن کامل

Highly selective hydrogenation of arenes using nanostructured ruthenium catalysts modified with a carbon-nitrogen matrix.

Selective hydrogenations of (hetero)arenes represent essential processes in the chemical industry, especially for the production of polymer intermediates and a multitude of fine chemicals. Herein, we describe a new type of well-dispersed Ru nanoparticles supported on a nitrogen-doped carbon material obtained from ruthenium chloride and dicyanamide in a facile and scalable method. These novel ca...

متن کامل

New route toward building active ruthenium nanoparticles on ordered mesoporous carbons with extremely high stability

Creating highly active and stable metal catalysts is a persistent goal in the field of heterogeneous catalysis. However, a real catalyst can rarely achieve both of these qualities simultaneously due to limitations in the design of the active site and support. One method to circumvent this problem is to fabricate firmly attached metal species onto the voids of a mesoporous support formed simulta...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Chemistry, an Asian journal

دوره 2 12  شماره 

صفحات  -

تاریخ انتشار 2007